On the DM annual modulation signal

(in collaboration with N. Bozorgnia, T. Schwetz and J. Zupan) [JCAP 03 (2012) 005, 1112.1627; PRL 109 (2012) 141301, 1205.0134; 0717681]

Juan Herrero-García

IFIC, Universidad de Valencia - CSIC (visiting Northwestern University)

Fermilab

6th June 2013

Outline

- Evidence and properties of dark matter
- Annual modulation in direct searches
- Bounds on the annual modulation and results
- Bounds between different experiments and results
- Inelastic scattering results
- Final remarks and conclusions

OF DARK MATTER

Evidence for dark matter

Rotation curves of spiral galaxies (Milky Way - 21cm line):

Bullet cluster (X-rays + gravitational lensing):

CMB data

Planck's results alone:

- $\Omega_{DE} \approx 0.69$
- $\Omega_B \approx 0.05$
- $\Omega_{DM} \approx 0.26$ (anisotropies of CMB)

The colours:

reflect how clear our current knowledge of the different components is.

CMB data

Concordance Model:

- CMB $\rightarrow \Omega_{TOT} = 1$
- SNIA $\rightarrow \Omega_{DE}, \Omega_{M}$
- BBN $\rightarrow \Omega_B$
- Clusters $\rightarrow \Omega_M$
- $\longrightarrow \overline{\Omega_{DM}}$

Other evidence:

- M/L ratio in galaxy clusters (virial theorem to gas).
- Growth of structure (N-body simulations).
- Globular clusters in galaxies.

Properties of a DM particle (or particles)

- Interacts gravitationally.
- With current's observed abundance (long-lived/ stable).
- Neutral (no e.m. interactions at tree level).
- If it acts weakly with the SM, direct detection is possible.
- Cold (or warm), otherwise would have free-streamed erasing small scales.
- Collisionless: it does not dissipate, it forms haloes.

The Milky Way

Juan Herrero-García

6th June 2013

ANNUAL MODULATION IN DIRECT SEARCHES

Direct detection

As we move through the galaxy, in our detector rest frame there is a WIMP wind.

If DM interacts weakly, it can produce nuclear recoils.

Extremely difficult experiments:

- Underground to reduce background.
- Energy deposited via ionization, heat &/or light.

Annual modulation in direct searches

Annual modulation:

Depending on the time of the year, we should *receive* more or less DM flux scattering in our detectors.

Typical velocities involved:

- $v_{\rm esc} \simeq 550$ km/s.
- $\bar{v} \simeq v_{Sun} \approx 220 \, \text{km/s}$.
- $v_e(t) \propto v_e \cos 2\pi (t t_0)$, with $v_e \simeq 30$ km/s.

Direct detection event rate: notation

• Flux (\sharp particles/ area/ time), with $\rho \approx$ 0.3 GeV/cm³:

$$\phi_{\chi} = n_{\chi} v = rac{
ho_{\chi}}{m_{\chi}} v = \left(rac{100\,{
m GeV}}{m_{\chi}}
ight)\,10^5{
m cm}^{-2}{
m s}^{-1}$$

Hand - waving rate (# counts/ time):

$$R = \phi_{\chi} \, \sigma_{\chi} \, N_{target} = rac{
ho_{\chi} \, v}{m_{\chi}} \, \sigma_{\chi} \, rac{ ext{target mass}}{m_{A}}$$

Differential event rate (# counts/ keV/ kg/ day):

$$R(E_r, t) = \frac{
ho_\chi}{m_\chi m_A} \int_{V_r} d^3 v \, \frac{d\sigma_\chi}{dE_r} v \, f_{det}(\vec{v}, t)$$

where by kinematics ($\delta = m_{\chi*} - m_{\chi}$; for elastic $\delta = 0$):

$$v_m = \sqrt{rac{m_A E_r}{2\mu_{_{Y}A}^2}} + rac{\delta}{\sqrt{2m_A E_r}}$$

Event rate final: simple expression

• The velocity distribution fulfills $(\int d^3v f_{det}(\vec{v},t) = 1)$:

$$f_{det}\left(ec{v},t
ight) = f_{\mathcal{S}un}(ec{v}+ec{v_e}(t)) = f_{gal}(ec{v}+ec{v}_{\mathcal{S}}+ec{v_e}(t)) \geq 0.$$

Using that for spin-independent (SI):

$$\frac{d\sigma_{\chi}}{dE_r} = \frac{m_A}{2\mu_{\chi A}^2 v^2} F^2(E_r) \sigma_A^0,$$

where
$$\sigma_A^0 = \sigma_p [Z + (A - Z)(f_n/f_p)]^2 \mu_{\chi A}^2/\mu_{\chi p}^2$$
 .

• The final rate can be simplified as:

$$R(E_r,t)\equiv C\,F^2(E_r)\,\eta(v_m,t), \;\; ext{with} \;\; C\equiv
ho_\chi\sigma_A^0/2m_\chi\mu_{\chi A}^2,$$

and:

$$\eta(\mathbf{v}_m,t) \equiv \int_{\mathbf{v}_m} d^3 v \, rac{f_{det}(\vec{v},t)}{v}.$$

f(v) and $\eta(v_m)$ (next figures from K. Freese et al.)

N-body simulations, at low velocities, DM in equilibrium, smooth halo:

• SHM - isothermal sphere with isotropic, Maxwellian $f(\vec{v})$:

$$f_{SHM}^{gal}(ec{v}) \propto e^{-ec{v}^2/ec{v}^2}$$

 Therefore, spectrum is exponential in the lab. frame:

$$R \sim e^{-E_r/E_0}$$

with $E_0 \sim \mathcal{O}(10 \, \text{KeV})$.

Typical rates and annual modulations

$$A_R(E_r) \approx 0.5 \left[R(E_r, \text{June}) - R(E_r, \text{December}) \right]$$

There can be unvirialized substructure at high velocities, important for low mass DM or inelastic scattering:

- Streams small v_{disp} , not spatially mixed: $\propto \delta^3(\vec{v}-\vec{v}_{stream})$
- Debris flows spatially homog. velocity: $\propto \delta(|\vec{v}| v_{flow})$

Modulation fraction = mod. / rate: $S_m = A_B/R$

Features:

- SHM: $\mathcal{O}(10\%)$, sinusoidal, $t_0 \sim \text{June}$, flip $\sim v_{min} \approx 200$ km/s.
- E_B of flip constrains m_{γ} .
- At large v_m , S_m grows, but no sensitivity except for very low m_{γ} .
- Streams: A_B large at $v_m \approx v_{stream}$. Possibly non-sinusoidal (higher harmonics). t_0 varies.
- Presumably f(v) is a mixture
- Need to be independent of f(v).

DAMA's and CoGeNT's annual modulation

CoGeNT (Ge):

- 2.8 σ
- phase April 16.
- $S_m \sim 0.1 0.3$.
- \longrightarrow $m_\chi\sim$ 10 GeV.

6th June 2013

DAMA (Nal):

- 8.9 σ , consistent with SHM phase at June 1.
- Fits typical sinusoidal modulation with T = 1 year.
- $S_m \sim 0.02$
- $m_{\chi} \sim 10 \; {
 m GeV} \, ({
 m Na}) \; \& \; m_{\chi} \sim 80 \; {
 m GeV} \, (I)$

DAMA & CoGeNT vs other experiments (Aprile et al.)

It assumes a SHM, a local density and escape velocity:

- XENON: most stringent constraint on σ_{SI} for $m_{\chi} > 10$ GeV.
- $m_{_Y} \sim$ 80 GeV (I) DAMA solution seems to be ruled-out for SI and SD by XENON, CDMS, COUPP.
- Need to be astrophysics independent!

BOUNDS ON THE ANNUAL MODULATION AND RESULTS

[JCAP 03 (2012) 005, 1112.1627]

Our goal: is the annual modulation seen due to DM?

- First part: establish a consistency check between the modulated signal and the constant rate, that must be fulfilled within an experiment by dark matter, by making very mild assumptions about the DM halo. [JCAP03(2012)005, 1112.1627 [hep-ph]
- Second part: translate the bound on the rate of one experiment into a bound on the annual modulation in a different experiment. [PRL, 1205.0134 [hep-ph]]
- Third part: inelastic scattering analysis of compatibility of DAMA and XENON100. [0717681 [hep-ph]]

ldea

The cause of the modulation, i.e., the velocity of the Earth (assumed to have all the time dependence) wrt the Sun:

$$v_e \sim$$
 30 km/s

is much smaller than the typical DM velocity wrt Earth:

$$\langle v \rangle \sim$$
 200 km/s

• For typical $E_B \sim 10$ KeV and Na, I, Ge:

$$v_{esc} > \langle v \rangle > v_m \gg v_e$$

so we can expand $\eta(v_m, t)$ in $\frac{v_e}{v} \ll 1$.

Expansion of $\eta(v_m, t)$ in v_e/v

To first order, $\mathcal{O}(v_e/v)$:

$$\eta(v_m, t) = \int_{v_m} d^3 v \, rac{f_{det}(\vec{v})}{v} = \int_{v_m} d^3 v \, rac{f_{Sun}(\vec{v} + \vec{v_e}(t))}{v} =$$

$$= \int_{v_m} d^3 v \, rac{f_{Sun}(\vec{v})}{v} +$$

$$egin{align} +\int extit{d}^3 v \, f_{Sun}(ec{v}) \, rac{ec{v} \cdot ec{v_e}(t)}{v^3} [\Theta(v-v_m) - \delta(v-v_m) \, v_m] \equiv \ &\equiv ar{\eta}(v_m) + extit{A}_{\eta}(v_m) \cos 2\pi (t-t_0) \end{array}$$

•
$$\bar{\eta}(v_m)$$
 is constant, A_η is modulated, with observed rates: $\overline{R} \equiv CF^2(E_r)\bar{\eta}(v_m)$ and $A_B \equiv CF^2(E_r)A_\eta$

 Can check for convergence with higher orders (Bozorgnia, H-G, Schwetz, Zupan, work in progress).

The general bound on the annual modulation

Assumptions:

- **9** Halo "smooth" on scales $\lesssim v_e \sim 30$ km/s: streams with $v_{disp} < v_e$ not covered.
- 2 Only time dependence in $v_e(t)$, not in f_{Sun} (no change on months), so spatially constant ρ at Sun-Earth scale.

$$A_{\eta}(v_m) \leqslant v_e \left[-rac{dar{\eta}}{dv_m} + rac{ar{\eta}(v_m)}{v_m} - \int_{v_m} dv rac{ar{\eta}(v)}{v^2}
ight]$$

Integrating over v_{min} and dropping the negative term:

$$\int_{v_{m1}}^{v_{m2}} extit{d} v_m \, A_\eta(v_m) \leqslant v_e \, \left[ar{\eta}(v_{m1}) + \int_{v_{m1}} extit{d} v \, rac{ar{\eta}(v)}{v}
ight]$$

- r.h.s. in terms of observed rates. Irrespective of phase.
- Allows an arbitrary halo structure, including several streams from different directions.

Symmetric bounds

• Preferred constant direction \hat{v}_{HALO} independent of v_m of the DM velocity distribution in the Sun's rest frame:

$$\int_{v_{m1}}^{v_{m2}} dv_m \, A_{\eta}(v_m) \leqslant v_e \, \left[\bar{\eta}(v_{m1}) - v_{m1} \int_{v_{m1}} dv \, \frac{\bar{\eta}(v)}{v^2} \right]$$

- Fulfilled for isotropic halos (Maxwellian), streams parallel to the motion of the Sun like a dark disc... Phase constant (up to sign flip).
- For these popular cases $\hat{v}_{HALO} \propto \hat{v}_{SUN}$, with $t_0 = \text{June 1st}$:

$$\int_{v_{m1}}^{v_{m2}} dv_m \, A_{\eta}(v_m) \leqslant 0.5 \, v_e \, \left[\bar{\eta}(v_{m1}) - v_{m1} \int_{v_{m1}} dv \, \frac{\bar{\eta}(v)}{v^2} \right]$$

Checking the general bound for the Maxwellian halo

Maxwellian halo is far from saturating the general bound. Bound one order of magnitude more stringent than $A_B < \bar{\eta}$.

Checking the symmetric bounds

Symmetric bounds are even stronger.

Close to dispersion velocities $\sim v_e$, the bounds are saturated.

Applying the bounds to real data

Subtleties:

- Experimental data binned: average over each bin.
- ullet Continuum bounds vs discrete data: integrals o sums...
- Single-target detector (CoGeNT) or multi-target (DAMA).
- Dependence on ρ_{γ} , σ_{p} , v_{esc} drops from the bounds.
- Depend on m_{χ} , $q(E_r)$ and $F^2(E_r)$.
- Valid for SI. SD and IV.

Results for DAMA: consistent with its rate

28/59

Results for CoGeNT: tensions with its rate

CoGeNT (with surface events subtracted)

Probability that the bound is fulfilled

Probability that the bound is fulfilled

CoGeNT is under severe pressure:

Under ass. 2 (2a) (typical DM haloes) data is inconsistent with any m_χ at \gtrsim 97% C.L. (\gtrsim 90% C.L.) respectively.

BOUNDS BETWEEN DIFFERENT EXPERIMENTS AND RESULTS

[PRL 109 (2012) 141301, 1205.0134]

The bounds are detector independent! (P. J. Fox et al.)

• Bounds are in terms of $\bar{\eta}$ or A_n , so are detector-independent, they can be applied to different exp.:

$$\int_{V_{m1}}^{V_{m2}} dv_m \, \tilde{A}_{\eta}^{DAMA}(v_m) \leqslant v_e \, \tilde{\eta}^{XENON}(v_{m1})$$

where we defined, with $\tilde{C} \equiv \rho_{\chi} \sigma_{p}/2m_{\chi} \mu_{\chi p}^{2}$:

$$ilde{\eta}(\mathbf{v}_m) \equiv \tilde{\mathbf{C}}\, \bar{\eta}(\mathbf{v}_m), \;\; \& \;\; \tilde{A_{\eta}}(\mathbf{v}_m) \equiv \tilde{\mathbf{C}}\, A_{\eta}(\mathbf{v}_m)$$

• Assuming scattering on Na (low m_{χ}):

$$A_R^i = rac{A_{Na}^2 \left\langle F_{Na}^2
ight
angle_i^i f_{Na}}{q_{Na}} \, ilde{A}_\eta^i (v_m^i)$$

where $q_{Na} = 0.3$ is the quenching factor, $F_{Na}(E_r)$ the form factor and $f_{Na} = m_{Na}/(m_{Na} + m_I)$ the Na mass fraction.

Upper bounds on $\tilde{\eta}(v_m)$ for null-result experiments

• The predicted number of events in $[E_1, E_2]$ is:

$$N_{[E_1,E_2]}^{pred} = MTA^2 \int\limits_0^\infty dE_{nr} F_A^2(E_{nr}) G_{[E_1,E_2]}(E_{nr}) ilde{\eta}(v_m)$$

with G the detector response, M the mass and T the exp. time.

- As $\tilde{\eta}(v_m)$ is a falling function, minimum events when $\tilde{\eta}(v) \equiv \tilde{\eta}(v_m)\Theta(v_m v)$ [P. J. Fox *et al.*].
- So, at v_m , there is a lower bound $N_{[E_1,E_2]}^{pred} \ge \mu(v_m)$, with

$$\mu(v_m) = MTA^2 ilde{\eta}(v_m) \int\limits_0^{E(v_m)} dE_{nr} F_A^2(E_{nr}) G_{[E_1,E_2]}(E_{nr})$$

Can obtain an upper bound of at a given \overline{C} .L. by: requiring that the probability of obtaining $N_{[E_1,E_2]}^{obs}$ events or less for a Poisson mean of $\mu(v_m)$ is equal to 1-C.L.

Modulations and upper bounds on the rates

General bound, spin independent

Spin dependent (on protons)

37/59

Isospin violation: different couplings to p and n.

IV also excluded:

Can supress scattering on Xe, but then on Si it is large.

Probability of compatibility of DAMA's modulation with the other null-result experiments

Probability of compatibility of DAMA's modulation with the other null-result experiments

DAMA is inconsistent with other null-result experiments:

- $m_{\gamma} \lesssim 15$ GeV, is disfavoured by ≥ 1 experiment at $\geq 4\sigma$.
- XE100 excludes at $> 6\sigma$ for $m_v \gtrsim 8$ GeV (SI).

Caveat: systematic uncertainties

We got rid (almost) of astrophysical uncertainties, however the bounds are still subjected to:

- particle physics: interaction type...
- nuclear: q_{Na}, F...
- experimental uncertainties: L_{eff}, channeling...

For example, DAMA's quenching factor...

For $q_{Na} = 0.45$:

- SI: excluded at $> 5\sigma$ for $m_{\gamma} \gtrsim 10$ GeV (general halo).
- SD a IV can achieve a consistency at $\approx 3\sigma$ (general halo).

INELASTIC SCATTERING

[hep-ph: 0717681]

Concept of inelastic scattering

 A DM particle χ scatters to an excited state χ*, with a mass difference:

$$\delta = m_{\chi^*} - m_{\chi} \sim \mathcal{O}(100\,\mathrm{KeV})$$

- Heavy nucleus are favoured: I in DAMA.
- v_m ~ v_{esc}, so only DM in the tail of DM distribution is probed, with:

$$v \in [v_{esc} - \Delta v, v_{esc}]$$
 with $\Delta v \sim v_e$

Non-unique $v_m \to E_R$ relation: shape test

$$v_m = \sqrt{\frac{m_A E_r}{2\mu_{\chi A}^2}} + \frac{\delta}{\sqrt{2m_A E_r}}$$

 $\int_{u_{min}}^{u_{med}} \rightarrow$ ambiguity:

$$I_a = \int_{E_{min}}^{E_{med}} \& I_b = \int_{E_{min}}^{E_2}$$
 should be =!

$$\frac{|I_a - I_b|}{\sqrt{\sigma_a^2 + \sigma_b^2}}$$
 for DAMA:

Range of validity of the bounds

Bounds go like:

$$\langle A_{\eta}
angle \lesssim rac{v_e}{\Delta v} \ \langle \eta
angle$$

so the expansion parameter $\sim v_e/\Delta v$ can become $\mathcal{O}(1)$.

- Δv overlap between:
- XENON100 [6.61, 43.04] KeV.
- DAMA [2, 4] KeVee.
 - Elastic ($\delta = 0$): $m_{\chi} \lesssim 50$ GeV.
 - In all regions, the trivial bound applies, $A_{\eta} < \bar{\eta}$.

Inelastic results for the general bound for DAMA

Integrated general bound:

$$\int_{u_{min}}^{u_{max}} dv \, A_{\eta}(v)(v-u_{min}) < 0.5 \, v_e \, \left(3 - \frac{u_{min}^2}{u_{max}^2}\right) \int_{u_{min}}^{u_{max}} dv \, \bar{\eta}(v)$$

• Trivial bound: $\int_{u_{min}}^{u_{max}} dv A_{\eta}(v) < \int_{u_{min}}^{u_{max}} dv \, \bar{\eta}(v)$.

FINAL REMARKS AND CONCLUSIONS

Final remarks and conclusions

- 1) We have derived bounds (almost completely) astrophysics-independent between the annual modulation and the constant rate.
- → DAMA's modulation is consistent with its own rate, while CoGeNTs was incompatible with its own rate at \geq 90 % C.L.
 - 2) We have extended the bounds to the case of comparing between the modulation in one experiment and the null-result of a different experiment.
- → DAMA, for all elastic interactions and with a DM mass $m_{\gamma} \lesssim 15$ GeV, is disfavoured by ≥ 1 experiment at $\geq 4\sigma$.
- → Inelastic scatt. for DAMA strongly disfavoured by XE100.

Final remarks and conclusions

- 1) We have derived bounds (almost completely)
 astrophysics-independent between the annual modulation
 and the constant rate.
- \longrightarrow DAMA's modulation is consistent with its own rate, while CoGeNTs was incompatible with its own rate at \gtrsim 90 % C.L.
 - 2) We have extended the bounds to the case of comparing between the modulation in one experiment and the null-result of a different experiment.
- \longrightarrow DAMA, for all elastic interactions and with a DM mass $m_\chi \lesssim$ 15 GeV, is disfavoured by \geq 1 experiment at \geq 4 σ . \longrightarrow Inelastic scatt. for DAMA strongly disfavoured by XE100.

The bounds are a necessary (not sufficient) test:

Any annually modulated signal has to pass them before stating that it is due to dark matter.

THANKS!

BACK-UP

CoGENT (without subtraction of surface events)

To study the consistency between A and R

- Conservative approach: only a fraction ω_i ($0 \le \omega_i \le 1$) of R_i is due to DM, the rest being an unknown background.
- Build a " χ^2 -like" function:

$$\Delta X^2 = \sum_{i}^{N} \left(\frac{A_i - B_i}{\sigma_i^A} \right)^2 \Theta(A_i - B_i)$$

and minimize w.r.t the ω_i .

- There is only a contribution to it when the bound is violated.
- Approximately χ^2 distributed with 1 d.o.f., m_{χ} .

X² for CoGeNT (with & without surface events subtr.)

$$\Delta X^2 = \sum_{i}^{N} \left(\frac{A_i - B_i}{\sigma_i^A} \right)^2 \Theta(A_i - B_i)$$

Chi square minimization

CoGeNT bounds on the DM mass

	Proc. 1	Proc. 1	Proc. 2	Proc. 2
Mean mass (GeV)	Normal	Surface	Normal	Surface
General bound	8.5	10	7.3	10
Symmetric bound	24	43	18	37
Sym. $\alpha = \pi/6$	27.5	59.5	16	35

Montecarlo

Method 3:

- For each m_{χ} , compute the less constraining set of ω_i by minimizing the X^2 .
- With this set of ω_i , suppose the bound is saturated (conservative) and simulate pseudo-data (for the modulation) taking the upper bounds (r.h.s.) as the mean value for a Gaussian, with σ_i = error of the true A_i .
- For each random data set, calculate the X^2 value and obtain its distribution.
- Oompare it with the X_{obs}^2 of the real data and calculate the probability of obtaining a $X^2 > X_{obs}^2$.
 - Probability to obtain $X^2 > X_{obs}^2 \equiv P_{bound is fulfilled}$.

Iterative method

• **Method 4.** For each bin i, the inequality depends only on ω_j , with $j \geq i$. The most conservative option is to have ω_i (ω_j with j > i) as large (small) as possible.

Iterative prescription to find the set of ω_i corresponding to the most conservative choice of background:

- Saturate the bounds ($\leq \rightarrow =$). System of N (\sharp bins) linear equations in ω_i .
- Starting with the highest bin j=N, solve for the ω_N that saturates the bound. If $\omega_N \leq 1$, it will be the smallest allowed value, so the bound for N-1 will be the weakest. If $\omega_N \geq 1$, i it is violated & we set it to one.
- Then go to the bin j = N 1 with that value of ω_N and look for the ω_{N-1} that saturates the bound, and so on...

Iterative method bounds

	Proc. 4	Proc. 4
Mean mass (GeV)	Normal	Surface
General bound	10	12.5
Symmetric bound	29.5	63
Sym. $\alpha=\pi/6$	37.5	94.5

Quantifying DAMA's modulation discrepancy

- We fix v_m (or m_χ). For each $\tilde{\eta}(v_m)$ there is a Poisson mean $\mu(v_m)$. We calculate the probability p_η to obtain equal or less events than measured by the null-result experiment.
- We construct the bound (r.h.s.) using the same $\tilde{\eta}(v_m)$.
- We calculate the probability p_A that the bound is not violated by assuming on the l.h.s of the bounds a Gaussian distribution for the modulation in each bin.
- Then $p_{joint} = p_{\eta} p_A$ is the combined probability of obtaining the experimental result for that $\tilde{\eta}$. Then we maximize it w.r.t. $\tilde{\eta}$ to obtain the highest joint probability.

Other inelastic plots

